AP CALCULUS BC	YouTube Live Virtual Lessons	Mr. Bryan Passwater Mr. Anthony Record
Topic: Unit 10*	Convergence and Taylor Polynomials Free Response Question Review	Date: April 13, 2020

* The Topics in this lesson will only be those that will be directly tested on the 2020 AP Calculus BC Exam

Topic Name	Topic #	Quick Synopsis			
Working with Geometric Series	10.2	CONVERGENCE OF A GEOMETRIC SERIES 1. If $ r < 1$, the geometric series $\sum_{n=0}^{\infty} ar^n$ converges 2. If $ r \ge 1$, the geometric series $\sum_{n=0}^{\infty} ar^n$ diverges. SUM OF AN INFINITE GEOMETRIC SERIES If $ r \ge 1$, the geometric series $\sum_{n=0}^{\infty} ar^n$ diverges.			
Harmonic and <i>p</i> -Series	10.5	CONVERGENCE OF A p-SERIES The p-series is defined by the following where p is a positive real number. $\sum_{n=1}^{\infty} \frac{1}{n^n} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ 1. converges if $p > 1$, and 2. diverges if $0 .$			
Alternating Series Test for Convergence	10.7	ALTERNATING SERIES TEST Let $a_n > 0$. The alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ and $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converge if the following conditions are both met:1. $\lim_{n \to \infty} a_n = 0$ 2. $a_{n+1} \le a_n$ for all $n > N$ where N is an integer			
Ratio Test for Convergence	10.8	THE RATIO TEST Let $\sum_{n=1}^{\infty} a_n$ be a series of nonzero terms. 1. Let $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$, a number. • If $L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely. • If $L = 1$, then the ratio test provides no conclusive information about the convergence or divergence of $\sum_{n=1}^{\infty} a_n$. • If $L > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges. • If $L > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges. • Let $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right \Rightarrow \infty$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.			
Finding Taylor Polynomial Approximations of Functions	10.11	DEFINITIONS OF nTH TAYLOR POLYNOMIAL AND nTH MACLAURIN POLYNOMIALIf f has n derivatives at c, then the polynomial $P_n(x) = f(c) + f'(c)(x - c) + \frac{f''(c)(x - c)^2}{2!} + \dots + \frac{f^{(n)}(c)(x - c)^n}{n!}$ is called the nth Taylor polynomial for f at c.If c = 0: $P_n(x) = f(0) + f'(0)(x) + \frac{f''(0)(x)^2}{2!} + \dots + \frac{f^{(n)}(0)(x)^n}{n!}$ is called the nth Maclaurin polynomial for f.			

BC1 Let
$$a_n = \frac{(-1)^n}{n^{p-2}}$$
 and $b_n = \frac{-2}{n^{6-p}}$

(a) Let p = 2.5. Show that both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge.

(b) Find all integer values of p such that
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ both converge.

(c) Let p = 4. Let f(x) be a function with derivatives of all orders at x = 2 with f(2) = -3 and where $f^{(n)}(2) = n! \cdot a_n$ for $n \ge 1$. Find $P_3(x)$, the third degree Taylor polynomial for f(x) centered at x = 2.

(d) Using $P_3(x)$ that you found in part (c), find $P'_3(x)$. When x = 3, the series $\sum_{n=1}^{\infty} c_n$ is a *p*-series whose first three terms correspond to the three terms of $P'_3(x)$. Determine whether $\sum_{n=1}^{\infty} c_n$ converges or diverges when x = 3.

BC2 Consider the series
$$\sum_{n=0}^{\infty} a_n$$
 where $a_n = \frac{5(x+3)^n}{(-6)^n}$.

(a) Determine if $\sum_{n=0}^{\infty} a_n$ converges or diverges when x = 1.

(b) Let $\sum_{n=0}^{\infty} a_n = L$ where L is a real number. Show that there is a value of x such that L = 15.

(c) Let
$$d_n = \frac{a_n}{n+1}$$
. Find the interval of convergence for $\sum_{n=0}^{\infty} d_n$.

(d) Let f(x) be a function that is twice differentiable at all x values. If the first three terms of $\sum_{n=0}^{\infty} d_n$ are the second degree Taylor polynomial for f(x) centered at x = -3, find f''(-3).

x	f(x)	f'(x)	$f^{\prime\prime}(x)$	$f^{\prime\prime\prime}(x)$
1	-2	0	3	4
4	$-\frac{9}{4}$	$\frac{3}{2}$	$-\frac{9}{4}$	$\frac{9}{2}$

BC3 The functions f and g are differentiable for all orders at all x values. Selected values for f and several of its derivatives are given in the table above. The function g is defined by:

$$g(x) = 3x + \int_{4}^{4x} f(t) dt$$

- (a) Find $P_3(x)$, the third degree Taylor polynomial for f(x) centered at x = 1.
- (b) Find $T_3(x)$, the third degree Taylor polynomial for g(x) centered at x = 1.
- (c) Let $\sum_{n=0}^{\infty} a_n$ be a geometric series whose first four terms are the four terms of $T_3(x)$ found in part (b).

Find $\sum_{n=0}^{\infty} a_n$ where $x = \frac{5}{4}$ or show that the series diverges.

(d) A portion of the function $h\left(\frac{x}{2}\right)$ is above. Explain why $h\left(\frac{x}{2}\right)$ could not be the graph of f(x).

- **BC4** A function *g* has derivatives of all orders for all values of *x*. A portion of the graph of *g* is shown above with the line tangent to the graph of *f* at x = 2.
- Let *h* be the function defined by $h(x) = x 2 \int_{2}^{2x} g(t) dt$.
- (a) Find the second degree Taylor polynomial $T_2(x)$, for h(x) centered at x = 1.
- (b) Explain why $P_2(x) = 1 + 3(x-2) \frac{5(x-2)^2}{2!}$ could not be the second degree Taylor polynomial for g(x) centered at x = 2.

(c) Consider the geometric series $\sum_{n=0}^{\infty} \frac{a_n}{(2n)!}$ where the first three terms of a_n correspond to the three terms for $T_2(x)$. Find $\sum_{n=0}^{\infty} \frac{a_n}{(2n)!}$ when x = 0.